Emergency vehicle data map-matching utilizing the Dijkstra's Algorithm
 \section*{Yanan Wu, Yalin Yang}

Geospatial Information Sciences, EPPS, The University of Texas at Dallas

Results

Conclusions

$>$ The map-matching algorithm works well for
capturing the trajectory path of simple GPS row points
> Dijkstra's Algorithm
Dijkstra's algorithm is limited to the highway intersection or roundabout.
Considering the direction of road.
The time required to find the optimal path becomes long when the search scope is broad.
Improve efficiency.
$>$ The algorithm is implemented in Python, which is
friendly for programming beginners.

- Validating by the results generated by Snap on Road API.

Future work

Embrace the probability model for road candidates' selection
Using the Hidden Markov model for best route calculating

References

Algizawy, E., Ogawa, T., \& El-Mahdy, A. (2017). Real-time large-scale map matching using mobile phone data. ACM Transactions on Knowledge Discovery from Data (TKDD), 11(4), 1-38.
Taguchi, S., Koide, S., \& Yoshimura, T. (2018). Online map matching with route prediction. IEEE Transactions on Intelligent Transportation (1), 338-347.

Zhang, D., Guo, Z., Guo, F., \& Dong, Y. (2021). An offline map matching algorithm based on shortest paths. International Journal of matching algorithm based on shortest path
Geographical Information Science, 1-24.
Zhang, X., \& Du, Z. (2017). Spatial Indexing. The Geographic Information Science \& Technology Body of Knowledge (4th Quarter 2017 Edition), John P. Wilson.

