3. Limit#

3.1. Domain of functions#

a. Denominator cannot be 0 i. The domain of f(x)=1x29x<3x>3

b. Roots of even squared are greater than or equal to 0

c. The number of logarithm is greater than 0 (lnxx>0)

d. Arcsin x and Arccos xx1

3.1.1. The equivalent of functions#

The same domain and the same mapping

i. f(x)=ln(x1)g(x)=ln(x1)2

ii. f(x)=xxg(x)=1

iii. f(x)=x2=g(x)=|x|

iv. f(x)={x,x11,x<1g(x)={0,x=11,x<1

3.1.2. The definition of limit#

Let f(x) be a function defined on an interval that contains x=a, except possibly at x=a. Then we say that,

limxaf(x)=L

if for every number ϵ>0 there is some number δ>0 such that

|f(x)L|<ϵwhenever0<|xa|<δ

3.2. Solve the limit Problem#

3.2.1. Substitute Directly#

3.2.2. L’Hopital’s Law#

i. Infinity to infinity

ii. Infinity small to infinity small

limx1x1x21=limx112x=12

3.2.3. The Property of infinity (∞) and infinity small (0)#

The product of infinity small with bounded function (e.g., sinx, cosx, arctanx, arccotx) is infinity small.

limxsinxx=limxsinx1x=0
limx2(x2)sin1x2=limusinuu=0

3.2.4. Three special cases#

Factorization

limx1x1x21=limx11x+1=12
limx4x4x+53=limx4x+5+3x+59=limx4x+5+3=6

Rationalization of numerator and denominator

limx4x4x+53=limx4(x4)(x+5+3)(x+53)(x+5+3)

Get the highest order x

limx2x3+3x2+57x3+4x21=27
limx3x2+57x3+4x21=0
limx2x3+3x2+54x21=

3.3. Two important limit#

i. limu(x)0sinu(x)u(x)=1

  1. Prove using the definition of differential

    a) limx0sinx=x

    f(x)=f(x+δ)f(x)δf(x+δ)=f(x)+f(x)δ, when δ0

    sin(x+δ)sinx+cosxδ when δ0

    sinδ0+δ, when δ0

    Replace δ with x, limx0sinx=x

ii. limA(1+1A)A=e

  1. Prove using Taylor’s Formula

    e<(1+1k)k=1+k1(1k)1+k(k1)12(1k)2+k(k1)(k2)123(1k)3+

    a)

    e=1+12!+13!+=e
  2. limx(12x)x=e2=1e2

  3. limx0(12x)1x=e2

  4. limx(1+1n)n+3=e

3.4. Equivalence of infinity small#

i. limx0sinxx=1sinxx (when x0)

ii. 1cosx12x2

  1. Prove: limx01cosx12x2=sinxx=1

iii. ln(1+x)x

  1. Prove: ln(1+x+δ)=ln(1+x)+δ1+x=ln1+δln(1+δ)δ when δ0 and x=0

  2. limx0ln(1+x)sin3x=2x3x=23

iv. ex1x

v. (1+x)α=1+αx

  1. Prove: (1+x+δ)α=(1+x)α+(αδ)(1+x)α1(1+δ)α=1+αδ when δ0 and x=0

3.5. Continuous#

3.5.1. Continuous in functions#

  1. f(x) has a definition at x0

  2. limxx0f(x)=f(x0)

3.5.2. Example#

f(x)={x2+2a,x0,sinx2x,x>0

is continuous at x=0, what’s the value of a?

Answer

limx0(x2+2a)=2a, limx0sinx2x=12=2aa=14

3.6. The break points of functions#

  1. The point with invalid definition

  2. The point with no limits

    a. x=3 for f(x)=x2+1x3, with limit =

  3. The point with limit that does not equal to its function value

3.7. The Intermediate Value Theorem#

If f(x) is continuous on the closed interval [a,b] and k is any number between f(a) and f(b), then there exists at least one value c in the interval (a,b) such that f(c)=k.

a. Prove there is a solution of x34x2+1=0 on the interval (0,1).

image.png