2. Matrix Mutiplication#

\[ A_{m \times n} \ast B_{n \times p} = C_{m \times p} \]

2.1. Interpret by column#

  • We could consider it as A * a set of column vectors, since each column of C only depends on A * each column of B

  • For example

\[\begin{split} \begin{bmatrix} 2 & 7 \\ 3 & 8 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 2 & 7 \\ 3 & 8 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 & 7 \\ 3 & 8 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 6 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \ast \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} + 0 \ast \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}, 6 \ast \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} + 1 \ast \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} \end{bmatrix} \end{split}\]

2.2. Interpret by row#

  • Rows of C are combination of rows of B

  • For example

\[\begin{split} \begin{bmatrix} 2 & 7 \\ 3 & 8 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 2 & 7 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \\ \begin{bmatrix} 3 & 8 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \\ \begin{bmatrix} 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 2 \ast \begin{bmatrix} 1 & 6 \end{bmatrix} + 7 \ast \begin{bmatrix} 0 & 1 \end{bmatrix} \\ 3 \ast \begin{bmatrix} 1 & 6 \end{bmatrix} + 8 \ast \begin{bmatrix} 0 & 1 \end{bmatrix} \\ 4 \ast \begin{bmatrix} 1 & 6 \end{bmatrix} + 9 \ast \begin{bmatrix} 0 & 1 \end{bmatrix} \end{bmatrix} \end{split}\]

2.3. Another mutiplication rule#

  • \(Z\) = Column of \(A\) * Row of \(B\)

  • Example

\[\begin{split} \begin{bmatrix} 2 & 7 \\ 3 & 8 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \end{split}\]
  • E.g.

    \[\begin{split} \begin{bmatrix} 2 & 3 \\ 3 & 18 \\ 4 & 24 \end{bmatrix} = \begin{bmatrix} 2 & 12 \\ 3 & 18 \\ 4 & 24 \end{bmatrix}, \end{split}\]

    it fits our rule: the columns of \(C\) are combinations of columns of \(A\), and rows of \(C\) are combinations of rows of \(B\).

    Since $\( \begin{bmatrix} 2 & 12 \\ 3 & 18 \\ 4 & 24 \end{bmatrix} \)$

    can be decomposed as two \(3 \times 1\) and \(1 \times 2\) matrices, we can see that no matter the column space or row space,

    \[\begin{split} \begin{bmatrix} 2 & 12 \\ 3 & 18 \\ 4 & 24 \end{bmatrix} \end{split}\]

    is a line.

    Therefore, \(AB = \text{sum of (columns of } A \times \text{ rows of } B)\)

    \[\begin{split} \begin{bmatrix} 2 & 7 \\ 3 & 8 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 6 \end{bmatrix} + \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 \times 6 + 7 \\ 3 \times 6 + 8 \\ 4 \times 6 + 9 \end{bmatrix} \end{split}\]

2.4. The Laws for Matrix Operations#

2.4.1. About addition#

\[ A + B = B + A \quad \text{(commutative law)} \]
\[ c(A + B) = cA + cB \quad \text{(distributive law)} \]
\[ A + (B + C) = (A + B) + C \quad \text{(associative law)} \]

2.4.2. About multiplication#

\[ AB \neq BA \quad \text{(the commutative "law" is usually broken)} \]
\[ A(B + C) = AB + AC \quad \text{(distributive law from the left)} \]
\[ (A + B)C = AC + BC \quad \text{(distributive law from the right)} \]
\[ A(BC) = (AB)C \quad \text{(associative law for } ABC \text{) (parentheses not needed)} \]

2.4.3. About Powers#

\[ A^p = AAA \cdots A \quad (p \text{ factors}) \]
\[ (A^p)(A^q) = A^{p+q} \]
\[ (A^p)^q = A^{pq}. \]

2.5. Block multiplication#

If \(A\) can be divided into 4 blocks of matrices, \(A_1, A_2, A_3, A_4\), and \(B\) as \(B_1, B_2, B_3, B_4\), then

\[\begin{split} \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} A_1B_1 + A_2B_3 & \cdots \\ \cdots & \cdots \end{bmatrix} \end{split}\]

Just like regular matrix multiplication.

2.6. Inverse#

For rectangular matrices, the left inverse is not equal to the right inverse, but for a square matrix,

\[ A^{-1}A = I = AA^{-1} \]

2.6.1. Example#

\[\begin{split} \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \to \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} \end{split}\]

2.6.2. property#

image.png

2.7. Two ways to solve the inverse#

2.7.1. Solve them by the meaning#

\[\begin{split} \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow a + 3b = 1 \rightarrow a = 7, b = -2 \end{split}\]
\[\begin{split} \begin{bmatrix} 2 & 7 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow 2a + 7b = 0 \end{split}\]
\[\begin{split} \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow c + 3d = 0 \rightarrow c = -3, d = 1 \end{split}\]
\[\begin{split} \begin{bmatrix} 2 & 7 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow 2c + 7d = 1 \end{split}\]

2.7.2. Gauss -Jordan (Augmented matrix)#

\[\begin{split} \begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 7 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 7 & -3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \end{split}\]
\[ E \begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} I \mid A^{-1} \end{bmatrix}, \quad E \text{ is the elimination matrix} \]

2.8. Singular matrix (do not have inverse)#

\[\begin{split} \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \end{split}\]

Square matrices do not have an inverse if I can find a vector \(\mathbf{x}\) with \(A\mathbf{x} = 0\).

\[\begin{split} \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{split}\]

2.9. Important Example#

image.png

The matrix \(S^2\) has a useful interpretation. \((S^2)_{ij}\) counts the walks of length 2 between node \(i\) and node \(j\). Between nodes 2 and 3, the graph has two walks: go via 1 or go via 4. From node 1 to node 1, there are also two walks: 1→2→1 and 1→3→1.

\[\begin{split} S^2 = \begin{bmatrix} 2 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 1 & 2 \\ 2 & 1 & 1 & 2 \end{bmatrix} \quad S^3 = \begin{bmatrix} 2 & 5 & 5 & 2 \\ 5 & 4 & 5 & 5 \\ 5 & 5 & 4 & 5 \\ 2 & 5 & 5 & 2 \end{bmatrix} \end{split}\]

Can you find 5 walks of length 3 between nodes 1 and 2?

The real question is why \(S^N\) counts all the \(N\)-step paths between pairs of nodes. Start with \(S^2\) and look at matrix multiplication by dot products:

\[(S^2)_{ij} = \text{(row } i \text{ of } S) \cdot \text{(column } j \text{ of } S) = s_{i1}s_{1j} + s_{i2}s_{2j} + s_{i3}s_{3j} + s_{i4}s_{4j}. \quad (7)\]

If there is a 2-step path \(i \to 1 \to j\), the first multiplication gives \(s_{i1}s_{1j} = (1)(1) = 1\). If \(i \to 1 \to j\) is not a path, then either \(i \to 1\) is missing or \(1 \to j\) is missing. So the multiplication gives \(s_{i1}s_{1j} = 0\) in that case.